Introduction to functions with Python.

Mon 10 May 2021

Some of the predefined Python functions can be found here:

« https://docs.python.org/3/library/functions.html
« https://docs.python.org/3/library/math.html#module-math

What's happening if you want:

« Your system to do a specific task?
- reuse a set of instructions?
« modify the behaviour of a an existing function?

You define your own function.

Function definition:

def foo():
pass

def print4():
msg =
for _ in

def bar():
(

def bar():
return

Parameters:

def baz(a, b, c):
s=a+b+c
return s

Nsukami Functions

def qux(a, b, c, d=
(d, e
=a+c+b

return s

>>> def qux(d=
(d, e)
s=a+c+b
return s

File , line

: non-default argument follows default argument
>>>

First class citizen:

In Python, functions are said to be first class citizens. Because, functions can be:

- stored inside variables, lists, dictionaries, tuples, sets.
. passed as arguments to others functions.

. defined within others functions.

« returned from others functions.

Examples:

def triple(x):
return x*
>>>
>>> foo = triple
>>> foo(2)

>>>
>>> operations = [triple,

>>> operations[0] (2)

>>> operations[1](2)

>>> operations[2] (2)
<class >
>>>

Page2

Nsukami Functions

>>>

>>>

>>> 1st =

>>>

>>> 1st2 = (map(triple, 1st))
(1st2)

>>> def power_generator (num) :

def power_n(power) :
return num ** power

return power_n

>>> power_two = power_generator (2)
>>> (power_two(8))

Anonymous functions:

Lambda functions are single-expression functions that are not bound to a name. The return statement is implicit.
Examples:

>>> (lambda x: x + 1)(2)
>>>

>>>

>>>

>>> foo = lambda x, y: x*y
>>> foo(2,2)

full_name = lambda first, last, age: first.title() last.titl } and I am
full name(, :)

def full_name(first, last, age):
return first.title() last.title() .

full_name (

Use cases for lambda functions:

Most of the time, you'll define and use Lambda functions with the following functions: filter, map, reduce, sort,
sorted, min, max.

Page3

https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functools.html?highlight=reduce#functools.reduce
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#max

Nsukami Functions

Passing a varying number of arguments to a function:

To pass an unspecified number of arguments to your functions, you can use 2 special symbols: *args and **kwargs.
>>>

>>>
>>> def plus(*args):
(args)
return (args)

>>>
>>> plus(l, 2, 3)
(1, 2, 3

>>> plus(1,

(> > >

>>>
>>> def foo(x*kwargs) :
(kwargs)
return (v for v in kwargs.values())
>>>
>>> foo(a=4, b=5)
{ 1 4, s Bk

>>> foo(a=

{ : 4,

Order is important:

You can't write the following, *args always comes before **kwargs:
>>> def foo(**kwargs, *args):
File , line
def foo(x*kwargs, *args):

: invalid syntax

Page 4

Nsukami Functions

You car't write the following, positional arguments comes before *args:

>>> def foo(xargs, a, b, c):
(args)
return a+tb+c

>>> foo(1l, 2, 3)
Traceback (most recent call last):
File , line 1, in <module>

foo() missing 3 required keyword-only arguments:
>>>
>>> foo(1, 2, 3, 4, 5, 6, 7, 8, 9,)
Traceback (most recent call last):
File , line 1, in <module>
foo() missing 3 required keyword-only arguments:
>>>

Recursive functions:

In Python, a function can call other functions. Itis also possible for a function to call itself. A function is said to be
recursive when that function calls itself during its execution. A recursive function will continue to call itself until
some condition is met to return a result.

Example of recursion in real life:

« place two parallel mirrors facing each other. Any object in between them would be reflected recursively.
o paper sizes and formats: A4, A3, A2, ...

« the Romanesco broccoli

« the Mandelbrot set

Recursion is a way for you to find the solution to a complex problem, by using/combining solutions to
smaller/simpler problems. Recursion is useful when you know a “a trivial case/solution” to the initial problem.

Exemple gcd:

def gcd_recursive(a,b):

if b==
return a

ciliser;
return gcd_recursive(b,alb)

Be careful:
When you write a function in its recursive form, you must think about the base condition that stops the recur-

sion. You don’t want the function calls itself infinitely. To make sure, infinite recursions are avoided, the Python
interpreter limits the depths of recursion. Example:

Pages

https://en.wikipedia.org/wiki/File:PapierformateA0bisA8.jpg
https://upload.wikimedia.org/wikipedia/commons/5/5e/Romanesco_broccoli_%28Brassica_oleracea%29.jpg
https://en.wikipedia.org/wiki/Fractal#/media/File:Mandelbrot_sequence_new.gif

Nsukami Functions

>>> def rec():
rec()

>>> rec()
>>> rec()
Traceback (most recent call last):

File , line 1, in <module>

File , line 2, in rec

File , line 2, in rec

File , line 2, in rec

[Previous line repeated more times]
RecursionError: maximum recursion depth exceeded
>>>

NB:

1. Sometimes the logic behind recursion is hard to follow through.
2. Recursive calls are expensive (inefficient) as they take up a lot of memory and time*.
3. Recursive functions are harder to debug.

4. Arecursive function can be written in an iterative form.

Iterative functions:

Youll recognize a function in its iterative form when:

« thereis aloop

- we know exactly how many iterations we will do

« within the loop, there are instructions that help find the final result
- avariable is used to store a result after each iteration

Example, ged, in its iterative form:

def gcd_iterative(a, b):

if a > b:
smallest

else:
smallest

for i in smallest+1): , and the st
if((a % 1) and (b % i == 0)):
ged = 1

return gcd

Page 6

Nsukami Functions

Docstrings:

Adocstringisastringliteral that occurs as the first statement in a module, function, class, or method definition. It
is strongly recommended to put docstrings inside all your functions. The convention asks us to always use "“triple
double quotes™” around docstrings. Examples:
>>>
>>> def avg(*args):

return (args) / (args)

>>>

>>> (avg)
Help on function avg in module __main__

avg(*args)
(END)

2 types of docstrings, one line & multi lines:

One-line docstring are for really obvious cases. They should really fit on one line. For example:

>>>
>>>
>>> def avg(*args):

return (arg)/ (args)

>>> (avg)
Help on function avg in module __main__

avg (*args)
Calculate and return average of passed arguments.
(END)

Multi-line docstrings consist of a summary line, followed by a blank line, followed by a more elaborate description.
To see an example of a multiline docstring, please, go check the following link: from line 102, to line 251.

Page7

https://www.python.org/dev/peps/pep-0257/
https://github.com/numpy/numpy/blob/main/numpy/core/arrayprint.py#L102
https://github.com/numpy/numpy/blob/main/numpy/core/arrayprint.py#L251

	Function definition:
	Parameters:
	First class citizen:
	Examples:

	Anonymous functions:
	Use cases for lambda functions:

	Passing a varying number of arguments to a function:
	Order is important:

	Recursive functions:
	Example of recursion in real life:
	Exemple gcd:
	Be careful:
	NB:

	Iterative functions:
	Example, gcd, in its iterative form:
	Docstrings:
	2 types of docstrings, one line & multi lines:

