
“Introduction to Python programming.”

Sun 09May 2021

Installation and configuration: Python3

To get started working with Python 3, you’ll need to have access to the Python interpreter. Installing Python will
depend on the Operating System you are using.

• If you’re aWindows user, you’ll need to:
– Download the appropriate version of Python:
– Navigate to the official Python website and go to the Download page.
– Click on the link for the latest release - Python 3.x.x. (as of writing, the latest is Python 3.9.0)
– Scroll to the bottom and select Windows x86-64 executable installer for 64-bit
– Once the installer downloaded, run it by double-clicking on the downloaded file.

• For theMacOS users, the best way to install Python, is to:
– install Homebrew, a MacOS package manager
– then, install Python using Homebrew:
– you’ll need to open a terminal and type: brew install python3

• Formost of theGNU/Linux users, Python3 comes pre-installed by default. If that is not your case, youmay
need to install the version 3 of Python:
– grap a fresh version of Python: https://www.python.org/ftp/python/3.9.0/Python-3.9.0.tar.xz
– extract the downloaded archive
– open a terminal:

* configure, sudomake, sudomake install

Once the installation is complete, youcan runPythonwith thepython3 command. If everything is okay, you should
see the interpreter showing:

>> python3
Python 3.8.2 (default, Feb 28 2020, 07:36:25)
[GCC 7.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

We strongly advise you to install Python on your computer to follow this course. In the case you’re not able to
install Python on your computer, there are online interpreters available for you:

• www.python.org/shell
• pythonfiddle.com
• repl.it
• trinket.io

1

https://python.org

Python introduction Patrick Nsukami

Operators:

Operators are special symbols that designate a computation, for example: addition andmultiplication. Operators
acts on operands. Operators are divided in categories, which are:

Arithmetic operators:

We use themwith numeric values so we can perform commonmathematical operations:

+ Addition x + y
- Subtraction x - y
* Multiplication x * y
/ Division x / y
% Modulus x % y
** Exponentiation x ** y
// Floor division x // y

Assignment operators:

Used to assign values to variables:

= x = 5 x = 5
+= x += 3 x = x + 3
-= x -= 3 x = x - 3
*= x *= 3 x = x * 3
/= x /= 3 x = x / 3
%= x %= 3 x = x % 3
//= x //= 3 x = x // 3
**= x **= 3 x = x ** 3

Comparison operators:

Used to compare two values:

== Equal x == y
!= Not equal x != y
> Greater than x > y
< Less than x < y
>= Greater than or equal to x >= y
<= Less than or equal to x <= y

Logical operators:

Used to combine conditional statements: (We’ll come back later to what’s conditional statements)

and Returns True if both statements are true x < 5 and x < 10
or Returns True if one of the statements is true x < 5 or x < 4
not Reverse the result, returns False if the result is true not(x < 5 and x < 10)

Page 2

Python introduction Patrick Nsukami

Identity operators:

Used to compare objects, not if they are equal, but if they are the same object, with the samememory location:

is Returns true if both variables are the same object x is y
is not Returns true if both variables are not the same object x is not y

Membership operators:

Used to test if a sequence is presented in an object:

in Returns True if an object x is present in the object y x in y
not in Returns True if an object x is not present in the object y x not in y

Values and types

In Python, everything is an object. In all your programs, what youmanipulate are objects. Tomanipulate all those
objects, you need: - to name them, using “variables”, a variable references an object. - to know their types, every
object has a type.

The values 100, 250, and “HelloWorld!”, belong to different types, for example, 2 is an integer, and “Hello,World!””
is a string, notice the double quotes. If you are not sure what type a value has, you can use the type function.

There are standard types that are built into the Python interpreter:

• Numbers: int, float, complex
• Booleans: True, False
• Sequences:

– immutable: Strings, Tuples, Bytes
– mutable: Lists, ByteArrays

• Set types: Sets, Frozen sets
• Mappings: Dictionaries

Variables, expressions and statements:

Pythonprogramscanbedecomposed intomodules. Amodule canbedecomposed in statements. A statement can
be decomposed in expressions. An expression can be decomposed in identifiers, literals, and operators (objects).

>>> # A statement is anything that can make up one or several lines of Python code.
>>> # An expression is part of a statement, and should produce at least one value.
>>> # Example:
>>> x = 1 # a statement
>>> x + 2 # an expression

Here is an assignment statements that creates new variable_name_ and gives it the value “foo”:
>>> name = "foo"

A variable name can contain both letters and numbers, but they have to begin with a letter. It is legal to use
uppercase letters, but the convention asks us to begin variable names with a lowercase letter.

Page 3

https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy

Python introduction Patrick Nsukami

Common strings operations:

Strings are bits of text. They can be defined as anything between double quotes. Python gives us some operations
to manipulate our strings. Themost common operations to do on strings are:

• length
• indexing
• slices
• in operator
• concatenation

But there is also interesting functions like:

• capitalize
• title
• upper
• lower
• find
• center
• format
• join
• etc …

Functions:

In mathematics, a function is a relationship or mapping between one or more inputs and a set of outputs. In
programming, a function is a unit of computation, a block of code, that encapsulate a specific task.

Functions are a way for us to make a program smaller by eliminating repetitive code. We use functions to bundle
a set of instructions that we want to reuse.

Example:
We already had the chance to manipulate some functions: print, type, help, dir, len, abs, int, …The language has
a number of functions that are always available for us.

User defined functions:

It is also possible to define our own functions. The syntax for defining a Python function is:

def <function_name>([<parameters>]):
<statement(s)>

def The keyword that informs Python that a function is being defined
<function_name> A valid Python identifier to name the function
<parameters> An optional, comma-separated list of parameters that may be passed to the function
: Punctuation that denotes the end of the Python function header
<statement(s)> A block of valid Python statements

Examples:
a function that does nothing, notice the pass keyword
def foo():

pass

a function that takes no arguments and returns nothing
def bar():

print("hello world")

Page 4

https://docs.python.org/3.9/library/string.html
https://docs.python.org/3/library/functions.htm
https://docs.python.org/3/library/functions.html

Python introduction Patrick Nsukami

a function that takes one argument
prints the passed parameter four times
and returns nothing
def print4(msg):

for _ in range(4):
print(msg)

a function that takes no arguments
and always return an integer, 42
def bar():

return 42

a function that takes 3 arguments
and return a sum of the passed parameters
def baz(a, b, c):

s = a + b + c
return s

return cause l'arrêt immédiat de la fonction
cette fonction prend un parametre positionnel: x
def f(x):

if x < 0:
return

if x > 100:
return

print(x)

une fonction qui prend 3 paramètres positionnels (ou paramètres requis)
et renvoie la somme de ces 3 paramètres
def baz(a, b, c):

s = a + b + c
return s

une fonction qui prend 5 parametres
3 paramètres positionnels: a, b, c
2 paramètres optionnels: d, e
d et e ont des "valeurs par défaut"
def qux(a, b, c, d="foo", e=42):

print(d, e)
s = a + c + b
return s

on retiendra que les paramètres positionnels
arrivent toujours avant les paramètres optionnels
autrement on obtient une erreur
>>> def qux(d="foo", e=42, a, b, c):
... print(d, e)
... s = a + c + b
... return s
...
File "<stdin>", line 1

SyntaxError: non-default argument follows default argument
>>>

Page 5

Python introduction Patrick Nsukami

The syntax for calling a function is:

<function_name>([<arguments>])

<arguments> are the values passed into the function.
<arguments> correspond to the <parameters> in the Python function definition.

Both a function definition and a function call must always include parentheses, even if they’re empty.

Control flow statements:

The if statement:

You will often need to execute some statements only if some condition holds, or choose to execute some code
dependingon severalmutually exclusive conditions. ThePython statement if, lets you conditionally execute blocks
of statements. Here’s the syntax for the if statement:

if x < 0:
print("x is negative")

elif x % 2:
print("x is positive and odd")

else:
print("x is even and non-negative")

Thewhile statement:

Thewhile statement supports repeated execution of block of statements that is controlled by a conditional expres-
sion. The loop body should contain code that eventually makes the loop condition false, or the loop will never end
unless an exception is raised or the loop body executes a break statement. Here’s an example:

number = 23
running = True

running it true, so we enter the while loop
while running:

guess = int(input('Please, enter an integer, : '))

if guess == number:
print('Congratulations, you guessed it.')
this causes the while loop to stop
running = False

elif guess < number:
print('No, it is a little higher than that.')

else:
print('No, it is a little lower than that.')

else:
A while statement can have an optional else clause.
print('The while loop is over.')
Do anything else you want to do here

print('Done')

Page 6

https://docs.python.org/3/tutorial/controlflow.html#if-statements
https://docs.python.org/3/reference/compound_stmts.html#while

Python introduction Patrick Nsukami

Thebreak statement is used to stop the executionof a looping statement, even if the loop conditionhasnot become
False. Example:

while True:
s = input('Enter something : ')
#
if s == 'quit':

break
print('Length of the string is', len(s))

print('Done')

The for statement:

Thefor statement in Python supports repeated execution of statements that is controlled by an iterable expression.
Here’s an example for the for statement:

>>> for i in range(5):
... print(i)
...
0
1
2
3
4

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12

for statementsmay have an else clause; it is executedwhen the loop terminates through exhaustion of the iterable.
The else clause executes after the loop completes normally, example:

for i in mylist:
if i == theflag:

break
process(i)

else:
raise ValueError("List argument missing terminal flag.")

Data structures:

Python built-in data structures are a way for you to performmore complex tasks.

Data structures are the fundamental constructs around which you build more interesting programs. Data struc-
tures are structures which can hold some datas together. In other words, data structures are used to store a collection
of related datas.

Page 7

https://docs.python.org/3/tutorial/controlflow.html#for-statements

Python introduction Patrick Nsukami

There are four built-in data structures in Python: list, tuple, dictionary and set. Let’s see how to use each of them:

Lists:

• List literals are written within square brackets [].
• Lists can hold arbitrary types of elements.
• Lists work similarly to strings, we use the len() function to get the size and square brackets [] to access data.
• The first element always at index 0.

Once you have created a list, you can add, remove or search for items in the list. Since we can add and remove
items, we say that a list is amutable data type: the type can be altered.

>>> # Example:
>>> arr = ["one", "two", "three"]
>>> arr[0]
'one'

>>> # Lists have a nice repr:
>>> arr
['one', 'two', 'three']

>>> # Lists are mutable:
>>> arr[1] = "hello"
>>> arr
['one', 'hello', 'three']

>>> del(arr[1])
>>> arr
['one', 'three']

>>> # Lists can hold arbitrary data types:
>>> arr.append(23)
>>> arr
['one', 'three', 23]

Tuples:

Tuples are data structures for ”“grouping” objects. Tuples are another data structure that can hold elements of
arbitrary data types. However, tuple objects are immutable. Elements can’t be added or removed dynamically.

>>> # Example:
>>> arr = ("one", "two", "three")
>>> arr[0]
'one'

>>> # Tuples have a nice representation:
>>> arr
('one', 'two', 'three')

>>> # Tuples are immutable:
>>> arr[1] = "hello"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Page 8

https://docs.python.org/3.9/library/stdtypes.html#lists
https://docs.python.org/3.9/library/stdtypes.html#tuples

Python introduction Patrick Nsukami

>>> del(arr[1])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object doesn't support item deletion

>>> # Tuples can hold arbitrary data types:
>>> # (Adding elements creates a copy of the tuple)
>>> arr + (23,)
('one', 'two', 'three', 23)

>>> # Notice the difference of identity
>>> id(_)
>>> 139687616067920
>>> id(arr)
>>> 139687614530944

Dictionaries:

Dictionaries, one of the most important and frequently used data structures in computer science. Dictionaries
store an arbitrary number of objects, each identified by a unique key. They’re so important that the standard
library includes:

• plain dictionary objects
• and a number of specialized dictionary implementations.
>>> # Example:
>>> car2 = {
... "color": "blue",
... "mileage": 40231,
... "automatic": False,
... }

>>> # Dicts have a nice repr:
>>> car2
{'color': 'blue', 'automatic': False, 'mileage': 40231}

>>> # Get mileage:
>>> car2["mileage"]
40231

>>> # Get mileage:
>>> car2["automatic"]
False

>>> # Dicts are mutable:
>>> car2["mileage"] = 12
>>> car2["windshield"] = "broken"
>>> car2
{'windshield': 'broken', 'color': 'blue',
'automatic': False, 'mileage': 12}

Page 9

https://docs.python.org/3.9/library/stdtypes.html#dict

Python introduction Patrick Nsukami

Sets:

Sets are unordered collections of simple objects that doesn’t allow duplicate elements. Sets are used to quickly
test a value for membership in the set, to insert or delete new values from a set, and to compute the union or
intersection of two sets. A common use of sets in Python is computing standard math operations such as union,
intersection, difference, and symmetric difference.

>>> # Example:
>>> # Be careful: To create an empty set you’ll need to call the set() constructor.
>>> # Using empty curly-braces {} will create an empty dictionary instead.
>>> vowels = {"a", "e", "i", "o", "u"}
>>> "e" in vowels
True

>>> letters = set("alice")
>>> letters.intersection(vowels)
{'a', 'e', 'i'}

>>> vowels.add("x")
>>> vowels
{'i', 'a', 'u', 'o', 'x', 'e'}

>>> len(vowels)
6

Page 10

https://docs.python.org/3.9/tutorial/datastructures.html?highlight=sets#sets

	Installation and configuration: Python3
	Operators:
	Arithmetic operators:
	Assignment operators:
	Comparison operators:
	Logical operators:
	Identity operators:
	Membership operators:

	Values and types
	Variables, expressions and statements:
	Common strings operations:
	Functions:
	User defined functions:

	Control flow statements:
	The if statement:
	The while statement:
	The for statement:

	Data structures:
	Lists:
	Tuples:
	Dictionaries:
	Sets:

